TDLT: Difference between revisions
m (better name for this) |
(→4x8) |
||
Line 26: | Line 26: | ||
!s1 | !s1 | ||
!CG | !CG | ||
!Filterbank | |||
|- | |- | ||
|R=f | |R=f | ||
Line 33: | Line 34: | ||
| 85/64<br>1.328125 | | 85/64<br>1.328125 | ||
| <br>8.63473 | | <br>8.63473 | ||
| [[Image:4x8.png|64px]] | |||
|- | |- | ||
|R=t,D=f | |R=t,D=f | ||
Line 40: | Line 42: | ||
| 1093/768<br>1.423177 | | 1093/768<br>1.423177 | ||
| <br>8.60486 | | <br>8.60486 | ||
| [[Image:4x8r.png|64px]] | |||
|- | |- | ||
|R=t,D=t | |R=t,D=t | ||
Line 47: | Line 50: | ||
| 93/64<br>1.453125 | | 93/64<br>1.453125 | ||
| <br>8.59886 | | <br>8.59886 | ||
| [[Image:4x8rd.png|64px]] | |||
|} | |} | ||
Revision as of 16:11, 25 May 2012
This page holds the results of Time Domain Lapped Transform (TDLT) optimization problems looking for integer transform coefficients that provide optimal coding gain. Wherever possible the assumptions are stated. Later we should include testing against actual image data to verify the results (see test data here).
The coding gain objective used as the objective is taken from slide 13 of Tim's presentation An Introduction to Video Coding
<need figure with block matrix diagrams>
The free parameters are initially just the coefficients p_0,...,p_m,q_0,...,q_m where m=(n/2)-1. We limit these to being dyadic rationals, e.g., x/2^d with d=6, between [-1,1].
Given p's and q's and assuming a linear ramp constrains the s's.
4x8
Optimal real-valued coefficients for V:
p0 = -0.18117338915051454
q0 = 0.6331818230771687
CG = 8.60603
8x16
Optimal real-valued coefficients for V:
p0 = -0.39460731547057293
p1 = -0.33002212811740816
p2 = -0.12391270981321137
q0 = 0.822154737511288
q1 = 0.632488694485779
q2 = 0.40214668677553894
CG = 9.56867
16x32
Best-known real-valued coefficients for V (R=t):
p0 = -0.42111473798940136
p1 = -0.4121736499899753
p2 = -0.3350240707669929
p3 = -0.3224547931861314
p4 = -0.25883387978005545
p5 = -0.20951913473498104
p6 = -0.0598657149803332
q0 = 0.9107782439906195
q1 = 0.8109855829278226
q2 = 0.715846584586721
q3 = 0.6135951570714172
q4 = 0.49846644853347627
q5 = 0.3945215834922529
q6 = 0.21822275136248082
CG = 9.81157
p0 | p1 | p2 | p3 | p4 | p5 | p6 | q0 | q1 | q2 | q3 | q4 | q5 | q6 | s0 | s1 | s2 | s3 | s4 | s5 | s6 | s7 | CG | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R=f | |||||||||||||||||||||||
R=t,D=f | -26/64 -0.40625 |
-23/64 -0.359375 |
-20/64 -0.3125 |
-18/64 -0.28125 |
-14/64 -0.21875 |
-14/64 -0.21875 |
-2/64 -0.03125 |
58/64 0.90625 |
52/64 0.8125 |
45/64 0.703125 |
36/64 0.5625 |
31/64 0.484375 |
23/64 0.359375 |
16/64 0.25 |
3/2 1.5 |
77/64 1.20313 |
373/320 1.16563 |
543/448 1.21205 |
109/96 1.13542 |
1543/1408 1.09588 |
1823/1664 1.09555 |
131/120 1.09167 |
9.79008 |
R=t,D=t |