Difference between revisions of "TDLT"
(→16x32) 
(→16x32) 

Line 204:  Line 204:  
    
R=f  R=f  
−     +   23/64<br>0.359375 
−     +   23/64<br>0.359375 
−     +   17/64<br>0.265625 
+   12/64<br>0.1875  
+   14/64<br>0.21875  
+   15/64<br> 0.234375  
 12/64<br>0.1875   12/64<br>0.1875  
−  
−  
−  
 50/64<br>0.78125   50/64<br>0.78125  
 41/64<br>0.640625   41/64<br>0.640625  
−    +   30/64<br>0.46875 
 20/64<br>0.3125   20/64<br>0.3125  
−    +   16/64<br>0.25 
−    +   15/64<br>0.234375 
−    +   11/64<br>0.171875 
−  +   90/64<br>1.40625  
−  +   72/64<br>1.125  
−    +   74/64<br>1.15625 
−    +   72/64<br>1.125 
−    
−    
 67/64<br>1.046875   67/64<br>1.046875  
−    +   66/64<br>1.03125 
−   <br>9.  +   68/64<br>1.0625 
+   74/64<br>1.15625  
+   <br>9.87871  
 [[Image:16x32.png64px]]   [[Image:16x32.png64px]]  
   
Revision as of 09:01, 16 July 2012
This page holds the results of Time Domain Lapped Transform (TDLT) optimization problems looking for integer transform coefficients that provide optimal coding gain. Wherever possible the assumptions are stated. Later we should include testing against actual image data to verify the results (see test data here).
The coding gain objective used as the objective is taken from slide 13 of Tim's presentation An Introduction to Video Coding
<need figure with block matrix diagrams>
The free parameters are initially just the coefficients p_0,...,p_m,q_0,...,q_m where m=(n/2)1. We limit these to being dyadic rationals, e.g., x/2^d with d=6, between [1,1].
Given p's and q's and assuming a linear ramp constrains the s's.
4x8
Optimal realvalued coefficients for V:
p0 = 0.18117338915051454
q0 = 0.6331818230771687
CG = 8.60603
p0  q0  s0  s1  CG  SBA  Filterbank  

R=f  11/64 0.171875 
36/64 0.5625 
91/64 1.421875 
85/64 1.328125 
8.63473 
22.0331 

R=t,D=f  12/64 0.1875 
41/64 0.640625 
92/64 1.4375 
1093/768 1.423177 
8.60486 
20.0573 

R=t,D=t max CG 
16/64 0.25 
41/64 0.640625 
92/64 1.4375 
93/64 1.453125 
8.59886 
18.9411 

R=t,D=t max SBA 
8/64 0.125 
30/64 0.46875 
136/64 2.125 
91/64 1.421875 
8.23230 
25.1934 
64px 
8x16
Optimal realvalued coefficients for V:
p0 = 0.39460731547057293
p1 = 0.33002212811740816
p2 = 0.12391270981321137
q0 = 0.822154737511288
q1 = 0.632488694485779
q2 = 0.40214668677553894
CG = 9.56867
16x32
Bestknown realvalued coefficients for V (R=t):
p0 = 0.42111473798940136
p1 = 0.4121736499899753
p2 = 0.3350240707669929
p3 = 0.3224547931861314
p4 = 0.25883387978005545
p5 = 0.20951913473498104
p6 = 0.0598657149803332
q0 = 0.9107782439906195
q1 = 0.8109855829278226
q2 = 0.715846584586721
q3 = 0.6135951570714172
q4 = 0.49846644853347627
q5 = 0.3945215834922529
q6 = 0.21822275136248082
CG = 9.81157